
1

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

UNIT - V

PL/SQL: Introduction, Shortcoming in SQL, Structure of PL/SQL, PL/SQL Language Elements, Data

Types, Operators Precedence, Control Structure, Steps to Create a PL/SQL, Program, Iterative Control,

, Procedure, Function, , Database Triggers, Types of Triggers.

--

 1) PL/SQL (Procedural Language/Structured Query Language):

1. PL/SQL stands for Procedural Language extension of SQL.

2. PL/SQL is a combination of SQL along with the procedural features of programming

languages.

3. It was developed by Oracle Corporation in the early 90’s to enhance the capabilities of SQL.

PL/SQL Block Structure:

1. A PL/SQL block contains 1 or more PL/SQL statements.

2. Each PL/SQL program consists of SQL and PL/SQL statements which from a PL/SQL block.

Syntax:

Declare

Variable declaration

Begin

Process statements

Or execution statement

[Exception

Exception statement]

End;

A PL/SQL block can be divided into four sections. They are

1. Declaration section

2. Begin section

3. Exception section

4. End section

1. Declaration Section:

 Code blocks start with a declaration section

 In this block memory variable and other oracle objects can be declared

2

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

 They can be used in SQL statements for data manipulation.

Example:

Declare

First_name varhcar2(10);

 Num number(10);

2. Begin Section:

 It consists of a set of SQL and PL/SQL statements

 It describes process that has to be applied to table data.

 Actual data manipulation, retrieval, looping and branching constructs are specified in this

section.

 3. Exception Section:

 This section deals with handling of errors

 That arise during execution of the data manipulation statements

 The errors can arise due to syntax and logic.

 4. End Section:

a. This makes the end of a PL/SQL block.

Example:

Declare

a number(4);

b number(4);

c number(4);

begin

b:=20;

c:=a+b;

dbms_output.put_line(c);

end;

1. dbms_ouput: it is a package.

2. That includes a number of procedures and functions that accumulate information in a buffer so

that it can be retrieved later.

3. These functions can also be used to display message.

4. put_line: put a piece of information in the package buffer followed by an end-of- line marker.

5. dbms_ouput.put_line(‘Hello’);

3

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

 PL/SQL Language Elements

There are different elements

1. Character Set

2. Lexical Units

a. Delimiters

b. Identifiers

c. Literals

d. Comments

1. Character Set

1. A PL/SQL program consists of text having specific set of characters.

2. Character set may include the following characters:

a. Alphabets, both in upper case [A–Z] and lower case [a–z]

b. Numeric digits [0–9]

c. Special characters () + − * /< >= ! ∼ ˆ ; : . _ @ %

d. Blank spaces, tabs, and carriage returns.

2. Lexical Units

1. A line of PL/SQL program contains groups of characters known as lexical units, which can be

classified as follows:

A. Delimiters

B. Identifiers

C. Literals

D. Comments

A. Delimiters

a. A delimiter is a simple or compound symbol

b. That has a special meaning to PL/SQL.

c. Simple symbol consists of one character

d. Compound symbol consists of more than one character.

B. Identifiers

a. Identifiers are used in the PL/SQL programs

4

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

b. To name the PL/SQL program items

i. Like constants, variables, cursors, cursor variables, subprograms, etc.

c. Identifiers can consists of alphabets, numerals, dollar

 signs, underscores, and number signs only.

d. Any other characters like hyphens, slashes, blank spaces, etc.

C. Literals

a. A literal is an explicitly defined character, string, numeric, or Boolean value,

D. Comments

1. Comments are used in the PL/SQL program

2. It used to improve the readability and understandability of a program.

3. A comment can appear anywhere in the program code.

4. The compiler ignores comments.

5. Generally, comments are used to describe the purpose and use of each code segment.

Ex: /* Hello World! This is an example of multiline comments in PL/SQL */

Q) Introduction to PL/SQL data types

Each value in PL/SQL such as a constant, variable and parameter has a data type that determines the

storage format, valid values, and allowed operations.

PL/SQL has two kinds of data types: scalar and composite. The scalar types are types that store single

values such as number, Boolean, character, and datetime whereas the composite types are types that

store multiple values, for example, record and collection.

This tutorial explains the scalar data types that store values with no internal components.

PL/SQL divides the scalar data types into four families:

 Number

 Boolean

 Character

 Datetime

A scalar data type may have subtypes. A subtype is a data type that is a subset of another data type,

which is its base type. A subtype further defines a base type by restricting the value or size of the base

data type.

https://www.oracletutorial.com/plsql-tutorial/plsql-constants/
https://www.oracletutorial.com/plsql-tutorial/plsql-variables/
https://www.oracletutorial.com/oracle-basics/oracle-number-data-type/
https://www.oracletutorial.com/plsql-tutorial/plsql-record/

5

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

Numeric data types

The numeric data types represent real numbers, integers, and floating-point numbers. They are stored

as NUMBER, IEEE floating-point storage types (BINARY_FLOAT and BINARY_DOUBLE),

and PLS_INTEGER.

Boolean data type

The BOOLEAN datatype has three data values: TRUE, FALSE, and NULL. Boolean values are

typically used in control flow structure such as IF-THEN, CASE, and loop statements like LOOP, FOR

LOOP, and WHILE LOOP.

SQL does not have the BOOLEAN data type, therefore, you cannot:

 Assign a BOOLEAN value to a table column.

 Select the value from a table column into a BOOLEAN variable.

 Use a BOOLEAN value in a SQL function.

 Use a BOOLEAN expression in a SQL statement.

 Use a BOOLEAN value in

the DBMS_OUTPUT.PUTLINE and DBMS_OUTPUT.PUT subprograms.

Character data types

The character data types represent alphanumeric text. PL/SQL uses the SQL character data types such

as CHAR, VARCHAR2, LONG, RAW, LONG RAW, ROWID, and UROWID.

 CHAR(n) is a fixed-length character type whose length is from 1 to 32,767 bytes.

 VARCHAR2(n) is varying length character data from 1 to 32,767 bytes.

Datetime data types

 The date time data types represent dates, timestamp with or without time zone and intervals.

PL/SQL datetime data types are DATE, TIMESTAMP, TIMESTAMP WITH TIME

ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL YEAR TO MONTH,

and INTERVAL DAY TO SECOND.

Data type Description

Char Character value of fixed length

Varchar2 Variable length character value

Number Numeric values

Date Date values

% type
Inherits the data type from a variable that you declared previously in
database table.

https://www.oracletutorial.com/oracle-basics/oracle-number-data-type/
https://www.oracletutorial.com/oracle-basics/oracle-floating-point-data-types/
https://www.oracletutorial.com/oracle-basics/oracle-floating-point-data-types/
https://www.oracletutorial.com/plsql-tutorial/plsql-if/
https://www.oracletutorial.com/plsql-tutorial/plsql-case-statement/
https://www.oracletutorial.com/plsql-tutorial/plsql-loop/
https://www.oracletutorial.com/plsql-tutorial/plsql-for-loop/
https://www.oracletutorial.com/plsql-tutorial/plsql-for-loop/
https://www.oracletutorial.com/plsql-tutorial/plsql-while-loop/
https://www.oracletutorial.com/oracle-basics/oracle-date/
https://www.oracletutorial.com/oracle-basics/oracle-timestamp/
https://www.oracletutorial.com/oracle-basics/oracle-timestamp-with-time-zone/
https://www.oracletutorial.com/oracle-basics/oracle-timestamp-with-time-zone/
https://www.oracletutorial.com/oracle-basics/oracle-interval/
https://www.oracletutorial.com/oracle-basics/oracle-interval/

6

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

PL SQL Operator Operator Precedence

Operator Description

** Exponentiation

+, - Identity, negation (unary operation)

*, / Multiplication, division

+, -, || Addition, subtraction, concatenation

=, <, >, <=, >=, <>, !=, ~=

IS NULL, LIKE, BETWEEN, IN

Comparison

NOT Logical negation

AND Conjunction

OR Inclusion

Q) Explain Control Structures in PL/SQL?

The follow of control statements can be classified into the following categories.

1. Conditional control

2. Iterative control

3. Sequential control

:=10;

 Conditional control

1. Conditional control, which run different statements for different data values.

2. It check the condition for single time only even it is true or false

% row

type

It is used to declare variable to keep a single record, since a record is

nothing but collection of column. This is also known as composite data

type.

Boolean
Boolean data type can be used to store the values true, false or null.

7

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

3. The conditional control statements are If and case.

a. IF

i. If then statement

ii. If then else statement

iii. If then else if statement

iv. Nested if statement

b. Case

 If statement

If condition is true it can execute statement 1 to statement n otherwise it cannot execute statement 1 to

statement n.

Syntax:

if(condition) then

Statement 1;

…………… Statement n;

End if;

Example:

DECLARE

a number:=&a;

BEGIN

if(a<10)then

 dbms_output.put_line(‘welcome to pl/sql’);

end if;

END;

 If then else statement

If condition is true it can execute statement 1. If the condition is false it execute else statement or

execute statement 2.

Syntax:

if(condition) then

Statement 1;

else

end if;

statement 2;

8

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

Example:

declare

a integer;

b integer; begin

a:=&a; /* it take run time values*/

b:=&b; /* it take run time values*/

if(a>b) then

 dbms_output.put_line(‘A is big’);

else

dbms_output.put_line(‘b is big’);

end if;

end;

 If then else if statement

If condition is true it can execute statement 1. If the condition is false its again chek for another condition

if it is true it can execute statement 2. Other execute else statement or execute statement 3.

Syntax:

if(condition) then

Statement 1;

 elsif(condition) then

statement 2;

else

 statement 3;

end if;

Example:

declare

a integer; b integer;

 c integer;

begin

a:=&a;

b:=&b;

c:=&c;

9

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

if(a>b and a>c)

then dbms_output.put_line(‘a is big’);

elsif(b>c) then

dbms_output.put_line(‘b is big’);

else

dbms_output.put_line(‘c is big’);

end if;

end;

 Nested if statement

Inner if is called nested if. if condition is false it execute stamen 3. Other wise it is true its check for

another condition if it is true it execute statement 1 other wise execute statement 2.

Syntax:

if(condition) then

if(condition) then

 statement 1;

else

statement 2;

 end if;else

statement 3;

end if;

 Case:

Syntax

case variable_name

When value1 then stmt; When value2 then stmt;

…………… Else stmt;

End case;

1. The case statement runs the first statements for which value equals variable name remaining

conditions are not evaluated.

2. If no value equals to variable name, the case statements runs else statements.

10

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

Ex:

Declare

Grade char:=’&grade’;

Begin

case grade

when ‘A’ then

dbms_output.put_line(‘Excellent’);

when ‘B’ then

dbms_output.put_line(‘Very good’);

when ‘C’ then

dbms_output.put_line(‘Good’);

when ‘D’ then

 dbms_output.put_line(‘Fair’);

when ‘F’ then

dbms_output.put_line(‘poor’);

else

dbms_output.put_line(‘no such grade’);

end case;

end;

Q) Iterative control (or) Loop controls

The PL/SQL loops are used to repeat the execution of one or more statements for specified number of

times. These are also known as iterative control statements.

Syntax for a basic loop:

LOOP

 Sequence of statements;

END LOOP;

11

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

Types of PL/SQL Loops

There are 3 types of PL/SQL Loops.

1. Basic Loop / Exit Loop

2. While Loop

3. For Loop

PL/SQL Exit Loop (Basic Loop)

PL/SQL exit loop is used when a set of statements is to be executed at least once before the termination

of the loop. There must be an EXIT condition specified in the loop, otherwise the loop will get into an

infinite number of iterations. After the occurrence of EXIT condition, the process exits the loop.

Syntax of basic loop:

LOOP

 Sequence of statements;

END LOOP;

Syntax of exit loop:

LOOP

statements;

EXIT;

{or EXIT WHEN condition;} END LOOP;

Follow these steps while using PL/SQL Exit Loop.

o Initialize a variable before the loop body

o Increment the variable in the loop.

o You should use EXIT WHEN statement to exit from the Loop. Otherwise the EXIT statement

without WHEN condition, the statements in the Loop is executed only once.

12

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

Example :

DECLARE

i NUMBER := 1;

BEGIN

LOOP

EXIT WHEN i>10;

DBMS_OUTPUT.PUT_LINE(i);

i := i+1;

END LOOP;

END;

PL/SQL While Loop

PL/SQL while loop is used when a set of statements has to be executed as long as a condition is true, the

While loop is used. The condition is decided at the beginning of each iteration and continues until the

condition becomes false.

Syntax of while loop:

WHILE <condition>

 LOOP statements;

END LOOP;

Follow these steps while using PL/SQL WHILE Loop.

o Initialize a variable before the loop body.

o Increment the variable in the loop.

o You can use EXIT WHEN statements and EXIT statements in While loop but it is not done often.

Example of PL/SQL While Loop

DECLARE

i INTEGER := 1;

BEGIN

13

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

WHILE i <= 10 LOOP

DBMS_OUTPUT.PUT_LINE(i);

i := i+1;

END LOOP;

END;

PL/SQL FOR Loop

PL/SQL for loop is used when when you want to execute a set of statements for a predetermined number

of times. The loop is iterated between the start and end integer values. The counter is always incremented

by 1 and once the counter reaches the value of end integer, the loop ends.

Syntax of for loop:

FOR counter IN initial_value .. final_value LOOP

 LOOP statements;

END LOOP;

o initial_value : Start integer value

o final_value : End integer value

Follow these steps while using PL/SQL WHILE Loop.

o You don't need to declare the counter variable explicitly because it is declared implicitly in the

declaration section.

o The counter variable is incremented by 1 and does not need to be incremented explicitly.

o You can use EXIT WHEN statements and EXIT statements in FOR Loops but it is not done often.

PL/SQL For Loop Example

DECLARE

VAR1 NUMBER;

BEGIN

VAR1:=10;

FOR VAR2 IN 1..10

LOOP

DBMS_OUTPUT.PUT_LINE (VAR1*VAR2);

END LOOP; END;

14

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

Q) PL/SQL Procedure

The PL/SQL stored procedure or simply a procedure is a PL/SQL block which performs one or more

specific tasks. It is just like procedures in other programming languages.

The procedure contains a header and a body.

o Header: The header contains the name of the procedure and the parameters or variables passed to

the procedure.

o Body: The body contains a declaration section, execution section and exception section similar to

a general PL/SQL block.

Creating a Procedure

A procedure is created with the CREATE OR REPLACE PROCEDURE statement. The simplified

syntax for the CREATE OR REPLACE PROCEDURE statement is as follows −

CREATE [OR REPLACE] PROCEDURE procedure_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{IS | AS}

BEGIN

 < procedure_body >

END procedure_name;

Where,

 procedure-name specifies the name of the procedure.

 [OR REPLACE] option allows the modification of an existing procedure.

 The optional parameter list contains name, mode and types of the parameters. IN represents the

value that will be passed from outside and OUT represents the parameter that will be used to return

a value outside of the procedure.

 procedure-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone procedure.

15

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

Example :

The following example creates a simple procedure that displays the string 'Hello World!' on the screen

when executed.

CREATE OR REPLACE PROCEDURE greetings

AS

BEGIN

 dbms_output.put_line('Hello World!');

END;

/

When the above code is executed using the SQL prompt, it will produce the following result −

Procedure created.

Executing a Standalone Procedure

A standalone procedure can be called in two ways −

 Using the EXECUTE keyword

 Calling the name of the procedure from a PL/SQL block

The above procedure named 'greetings' can be called with the EXECUTE keyword as −

EXECUTE greetings;

The above call will display −

Hello World

PL/SQL procedure successfully completed.

The procedure can also be called from another PL/SQL block −

BEGIN

 greetings;

END;

/

The above call will display − Hello World . PL/SQL procedure successfully completed.

Deleting a Standalone Procedure

A standalone procedure is deleted with the DROP PROCEDURE statement. Syntax for deleting a

procedure is −

16

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

DROP PROCEDURE procedure-name;

You can drop the greetings procedure by using the following statement −

DROP PROCEDURE greetings;

Parameter Modes in PL/SQL Subprograms

1. IN parameters: The IN parameter can be referenced by the procedure or function. The value of

the parameter cannot be overwritten by the procedure or the function.

2. OUT parameters: The OUT parameter cannot be referenced by the procedure or function, but

the value of the parameter can be overwritten by the procedure or function.

3. INOUT parameters: The INOUT parameter can be referenced by the procedure or function and

the value of the parameter can be overwritten by the procedure or function.

Q) PL/SQL Function

The PL/SQL Function is very similar to PL/SQL Procedure. The main difference between procedure and

a function is, a function must always return a value, and on the other hand a procedure may or may not

return a value. Except this, all the other things of PL/SQL procedure are true for PL/SQL function too.

Syntax to create a function:

CREATE [OR REPLACE] FUNCTION function_name [parameters]

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN

 < function_body >

END [function_name];

Here:

o Function_name: specifies the name of the function.

o [OR REPLACE] option allows modifying an existing function.

o The optional parameter list contains name, mode and types of the parameters.

o IN represents that value will be passed from outside and OUT represents that this parameter will

be used to return a value outside of the procedure.

17

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

The function must contain a return statement.

o RETURN clause specifies that data type you are going to return from the function.

o Function_body contains the executable part.

o The AS keyword is used instead of the IS keyword for creating a standalone function.

EXAMPLE :

create or replace function adder(n1 in number, n2 in number)

return number

is

n3 number(8);

begin

n3 :=n1+n2;

return n3;

end;

/

Calling PL/SQL Function:While creating a function, you have to give a definition of what the function

has to do. To use a function, you will have to call that function to perform the defined task. Once the

function is called, the program control is transferred to the called function.

After the successful completion of the defined task, the call function returns program control back to the

main program.

To call a function you have to pass the required parameters along with function name and if function

returns a value then you can store returned value

Example

Create Function:

CREATE OR REPLACE FUNCTION totalCustomers

RETURN number IS

 total number(2) := 0;

BEGIN

 SELECT count(*) into total

 FROM customers;

18

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

 RETURN total;

END;

/

After the execution of above code, you will get the following result.

Function created.

Calling function code:

DECLARE

 c number(2);

BEGIN

 c := totalCustomers();

 dbms_output.put_line('Total no. of Customers: ' || c);

END;

/

PL/SQL Drop Function

If you want to remove your created function from the database, you should use the following syntax.

DROP FUNCTION function_name;

Q) TRIGGERS AND ITS TYPES

Triggers are stored programs, which are automatically executed or fired when some events occur. Triggers

are, in fact, written to be executed in response to any of the following events −

 A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)

 A database definition (DDL) statement (CREATE, ALTER, or DROP).

 A database operation (SERVER ERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).

Triggers can be defined on the table, view, schema, or database with which the event is associated.

Benefits of Triggers

Triggers can be written for the following purposes −

 Generating some derived column values automatically

 Enforcing referential integrity

 Event logging and storing information on table access

19

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

 Auditing

 Synchronous replication of tables

 Imposing security authorizations

 Preventing invalid transactions

Creating a trigger:

Syntax for creating trigger:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

 Declaration-statements

BEGIN

 Executable-statements

EXCEPTION

 Exception-handling-statements

END;

Here,

o CREATE [OR REPLACE] TRIGGER trigger_name: It creates or replaces an existing trigger with

the trigger_name.

o {BEFORE | AFTER | INSTEAD OF} : This specifies when the trigger would be executed. The

INSTEAD OF clause is used for creating trigger on a view.

o {INSERT [OR] | UPDATE [OR] | DELETE}: This specifies the DML operation.

o [OF col_name]: This specifies the column name that would be updated.

o [ON table_name]: This specifies the name of the table associated with the trigger.

20

PATAN ARIFOON.,MCA(M.Tech)

UGC NET & APSET QUALIFIED

o [REFERENCING OLD AS o NEW AS n]: This allows you to refer new and old values for various

DML statements, like INSERT, UPDATE, and DELETE.

o [FOR EACH ROW]: This specifies a row level trigger, i.e., the trigger would be executed for each

row being affected. Otherwise the trigger will execute just once when the SQL statement is

executed, which is called a table level trigger.

o WHEN (condition): This provides a condition for rows for which the trigger would fire. This

clause is valid only for row level triggers.

Type of Triggers

1. BEFORE Trigger: BEFORE trigger execute before the triggering DML statement (INSERT,

UPDATE, DELETE) execute. Triggering SQL statement is may or may not execute, depending

on the BEFORE trigger conditions block.

2. AFTER Trigger: AFTER trigger execute after the triggering DML statement (INSERT,

UPDATE, DELETE) executed. Triggering SQL statement is execute as soon as followed by the

code of trigger before performing Database operation.

3. ROW Trigger: ROW trigger fire for each and every record which are performing INSERT,

UPDATE, DELETE from the database table. If row deleting is define as trigger event, when

trigger file, deletes the five rows each times from the table.

4. Statement Trigger: Statement trigger fire only once for each statement. If row deleting is define

as trigger event, when trigger file, deletes the five rows at once from the table.

5. Combination Trigger: Combination trigger are combination of two trigger type,

1. Before Statement Trigger: Trigger fire only once for each statement before the

triggering DML statement.

2. Before Row Trigger : Trigger fire for each and every record before the triggering DML

statement.

3. After Statement Trigger: Trigger fire only once for each statement after the triggering

DML statement executing.

4. After Row Trigger: Trigger fire for each and every record after the triggering DML

statement executing.

	UNIT - V
	 1) PL/SQL (Procedural Language/Structured Query Language):
	PL/SQL Block Structure:
	Syntax:
	1. Declaration Section:
	Example:
	2. Begin Section:
	3. Exception Section:
	4. End Section:
	Example: (1)
	 PL/SQL Language Elements
	1. Character Set
	2. Lexical Units
	A. Delimiters
	B. Identifiers
	C. Literals
	D. Comments
	Q) Introduction to PL/SQL data types
	Numeric data types
	Boolean data type
	Character data types
	Datetime data types
	PL SQL Operator Operator Precedence
	Q) Explain Control Structures in PL/SQL?
	Conditional control
	 If statement
	Syntax:
	Example:
	 If then else statement
	Syntax: (1)
	Example: (1)
	 If then else if statement
	Syntax: (2)
	Example: (2)
	 Nested if statement
	Syntax: (3)
	 Case:
	Ex:
	Declare
	Grade char:=’&grade’;
	Begin
	case grade
	Q) Iterative control (or) Loop controls
	Types of PL/SQL Loops

	PL/SQL Exit Loop (Basic Loop)
	PL/SQL While Loop
	Example of PL/SQL While Loop

	PL/SQL FOR Loop
	PL/SQL For Loop Example

	Q) PL/SQL Procedure
	Creating a Procedure
	Example :
	The following example creates a simple procedure that displays the string 'Hello World!' on the screen when executed.

	Executing a Standalone Procedure
	Deleting a Standalone Procedure
	Parameter Modes in PL/SQL Subprograms

	Q) PL/SQL Function
	The function must contain a return statement.
	Example
	PL/SQL Drop Function
	Benefits of Triggers

	Creating a trigger:
	Type of Triggers

